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Outline

• Mars2020 and ISRU

• MOXIE

• MOXIE hardware implementation and technical 

challenges

• The future…
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Mars2020
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Based on Mars Science Laboratory (“Curiosity”)

Planned launch in summer 2020

Science goals:

• Looking for Past Habitability

• Seeking Biosignatures

• Caching Samples

• Preparing for Humans
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ISRU: “Living off the land”

ISRU: In-situ Resource Utilization -- Using the resources 

available where you are to make useful things

Goal: Avoid having to bring everything from Earth (drives 

launch mass)

Possible usable resources in solar system:

• Minerals from Moon: raw materials, oxygen

• Water (ice) from asteroids/comets

• Gases from gas giants
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ISRU on Mars

Resources on Martian surface:

• Rocks

• Dust

• More dust

• Water (ice caps, underground?)

• Mars rovers/landers

• CO2

– Atmosphere: 95% CO2, ~3% N2, ~2% Ar

– Low density: ~1/100 Earth pressure (2-12 torr, average ~7 torr)
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What can we do with CO2?

• CO2 has O2, and O2 is useful – breathing, 
oxidizer
– Mars ascent requires ~35 metric tons oxygen
– Requires launching ~200 metric tons from Earth

• What if we could make O2 on Mars?
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ISRU on Mars: Human-scale
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MOXIE: The Mars Oxygen ISRU Experiment

• Goal: demonstrate the production of oxygen (O2) from 

Mars CO2 atmosphere

• PI: Michael Hecht, MIT Haystack Lab

– Deputy PI: Jeff Hoffman, MIT AeroAstro

• Project Management and implementation: JPL

• MOXIE is a NASA “Class D” instrument: lower cost, 

higher risk tolerance, ideal for new technology infusion
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• Supported by HEO/AES, STMD/Tech Demos

• Mars 2020 Project managed by SMD
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Why send MOXIE to Mars?

• Reduce risk/mature the technology for flight

• Inform future designs / Learn how to scale up

• Send a message to an interested & enthusiastic public
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Public engagement
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MOXIE Top-level requirements

• Generate oxygen on Mars – minimum 6g/hr at 5 

torr / 0° C environment

• Produce oxygen at >98% purity

• Operate at least 10 times in various 

environmental conditions over Mars2020 

mission life (1.5 Mars years)
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MOXIE System Block Diagram
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MOXIE System Block Diagram
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Solid Oxide Electrolysis
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Doped ceramic (yttria-stabilized zirconia) conducts O2 ions at high temp
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Solid Oxide Electrolysis – connecting cells
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CO2 Inlet

O2 Outlet

CO/CO2 Exhaust

• High chromium alloy (matched CTE to 

ceramic electrolyte)

• Approximately 100mm x 50mm x 2mm

• Contains manifolding for gas streams
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SOXE – connecting cells
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CO2 Inlet

O2 Outlet

CO/CO2 Exhaust
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SOXE stack components
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SOXE stack

18

• Solid Oxide Electrolysis Units 

(“stacks”) 

• Configured as two electrically 

independent stacks of 5 cells each 

• Cells, Interconnects, and 

End/Midplates held together by 

glass seals

• Inconel supply tubing and 

electrical leads

• Operating temperature of 800°C

• 6 g/hr O2 out requires ~50 g/hr

CO2 in

• Stacks built and provided by 

partner Ceramatec, Inc. (now 

Oxeon Energy)
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SOXE stack operating envelope
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Safe Operating Regime

VCO Nernst = fn{ XCO, T, Anode PO2. Cathode Pressure }

VCO2 Nernst = fn{ XCO, T, Anode PO2 }

Increasing (I / Mdot)

Coking Regime

No O2 Production

55 g/hr, 800° C, steady-state
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Cycle-to-Cycle Degradation

20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Cu
rr
e
n
t	(
A
)

Cycle	Number

CSA-008	Summary	Stack	Current

Min	Current

Max	Current

Avg	Current



j p l . n a s a . g o v

SOXE Performance
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• Generate oxygen on Mars – minimum 6g/hr at 5 torr / 0° C 

environment: >1g/hr per cell (10 cells)

• Produce oxygen at >98% purity: All recent stacks exceed 99.9%

• Operate at least 10 times in various environmental conditions over 

Mars2020 mission life (1.5 Mars years): >45 cycles w/ no failures

• Oxygen production limited by:

• Inlet flow (pump capacity, gas density at landing site)

• Available power (4A limit, equiv. to 12 g/hr)

• SOXE capability (10 cells, 22.7 cm2/cell)



j p l . n a s a . g o v

SOXE Packaging
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• Package SOXE stack, SOXE heaters, and inlet gas heat 

exchanger

• Maintain at 800° C with < 70 W heater power

• Minimize total energy (m Cp ΔT) required for warmup

• …and it all has to survive launch environments (concern: 

brittle ceramics in SOXE)

• …and provide mechanical compression along stack axis: 

800 to 4000 N (180 to 900 lb)
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SOXE Assembly
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Inlet gas preheater

Top heater

Top “heater carrier”

SOXE Stack

Bottom “heater carrier”

Bottom heater
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Stack compression
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• Evaluated various options (cold springs, hot springs, compress through 

insulation)

• Compressing through insulation – lowest mass, lowest energy

• Requires structural insulation – must be able to withstand full 

compressive loads

• Key concept: Heritage

– Use insulation (Min-K) 

implemented in MMRTG

– Low conductivity, 

sufficient strength

– Issue: Min-K slowly 

relaxes with time, 

especially at high 

temperatures
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SOXE Assembly
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Stack

Min-K

Min-K

Aerogel composite

Stack held in place via friction

~3000 N (~600 lbf) preload at launch
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SOXE Assembly
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Service loops

Heat exchangers

Compression springs

Radiation shield

Total mass: ~2.5 kg

Energy required to heat: ~360 W-hr

Power to maintain at 800° C: ~70 W
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Prototype SOXE Assembly
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Prototype SOXE Assembly
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Gas Delivery – Scroll Compressor
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• Scroll pump chosen for real time compression to ~1 bar without 

intermediate storage. 

• Energy efficient, can be scaled at least 10-fold. Lifetime TBD.

• Low-speed (2000-4000 RPM)
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Scroll Compressor operating principle
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https://www.youtube.com/watch?v=CXmFSb7TIhs
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MOXIE Scroll Compressor
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MOXIE Scroll Compressor
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1. Inlet 

2. Fill Housing with CO2

3. CO2 Enters Scroll Inlets Locations

4. Compression within scrolls

5. Discharge through cross hole

6. Outlet

Performance: 83g/hr for inlet 

gas P=7 Torr, T= 20°C

Pin = 120 W

Mass: ~2kg
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MOXIE Scroll Compressor Performance

Measured performance: 83g/hr for inlet gas P=7 Torr, T= 20°C

Pin = 120 W

Mass: ~2kg
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Gas Analysis

• Anode:

– Pyroscience O2 fluorescence 

sensor (0-100% O2)

– smartGAS NDIR CO2 sensor (0-5% 

CO2)

• Cathode

– smartGAS NDIR CO2 sensor (0-

100%) CO2

– smartGAS NDIR CO sensor (0-

100%) CO

• Flow meter, pressure sensors, 

stack current

34
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Packaging
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O2 Plant 

Chassis

Sensor 

Panel

SOXE 

Assembly
Scroll Compressor

Assembly

305mm

260mm 290mm

Total mass: ~17 kg

Peak power draw: 300 W

Total energy allocation per run: 1000 W-h
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Inlet filter assembly
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Filter

Filter Cover

Filter Right 

Angle Fitting

Rover Aft Side 

Panel
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MOXIE on M2020
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Filter Inlet

(toward ground)

CO/CO2 Outlet

O2 Outlet

O2 Service

+X

+Y

+X

+Y

+Z

Inlet Filter
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A day in the life of MOXIE
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MOXIE Status

• Currently building flight hardware!

• Preparing for integrated system-level testing

• Flight I&T slated to begin in March 2018, delivery 

to M2020 in October 2018
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Looking toward the future: Mass
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Would scale to 2730 

kg at 2 kg/hr!

But…

Pre-Decisional Information -- For Planning and Discussion Purposes Only
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Looking toward the future: Mass Scaling
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• Scales with production rate R (x167):

– SOXE cell mass

– Compressor mass

– Filter assembly

• Scales with # of modules (x6)

– Sensors

– Electronics

• Scales with surface area R2/3 (x30)

– Thermal (insulation, etc.)

– Structure

Pre-Decisional Information -- For Planning and Discussion Purposes Only
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Looking toward the future: Mass
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Inlet	assembly

Compression

SOXE	cells

SOXE	Assembly

Process	M&C

Electronics

Thermal

Mechanical

MOXIE	(12	G/HR,	16.4	KG)

Inlet	assembly

Compression

SOXE	cells

SOXE	Assembly

Process	M&C

Electronics

Thermal
Mechanical

MOXIE-NG,	2	KG/HR,	1010	KG
We can land this on 

Mars

Pre-Decisional Information -- For Planning and Discussion Purposes Only
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Looking toward the future: Power
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Would scale to 

51 kW at 2 kg/hr!

But…

Pre-Decisional Information -- For Planning and Discussion Purposes Only
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Looking toward the future: Power Scaling
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• Scales with production rate R (2000/12 (g/hr) = x167):

– Electrolysis (including enthalpy) – rigorously!

– Compression

• Scales with # of modules (x6, 334 g/hr each, ~sixty 10x10 cm cells)

– Sensors

– Electronics

• Scales with surface area R2/3 (x30)

– SOXE heat loss

• Expected improvements: 

– Compression power assumed to be 70% of scaled value

• Lower elevation (like MSL or VL2) gets you to 75%

• Reduce output pressure 

• Increase utilization (more SOXE cells or CO2 recovery) 

– Custom DC converters improve from 83% to 90% efficient 

– Gas pre-heat replaced by heat exchange with exhaust

– Sensor panel captures heat from, e.g., pump body

Pre-Decisional Information -- For Planning and Discussion Purposes Only
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Electrolysis

CompressionHeat	loss

Sensors

Electronics

DC	Conversion

MOXIE	(12	G/HR,	308	W)

Looking toward the future: Power
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Electrolysis

Compression

Heat	loss

Sensors

Electronics

DC	Conversion

MOXIE-NG,	2	KG/HR,	25.1	KW
Would require ~200 m2

solar array on Mars 

surface…at peak 

insolation

Pre-Decisional Information -- For Planning and Discussion Purposes Only
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MOXIE Gas Flow Schematic
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Aerogel
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• Extremely low conductivity, but…

– Transparent in infrared

– Brittle

• Solution: Reinforced aerogel 

composite (JPL-developed)

– Opacified with TiO2

– Reinforced with silica fibers

– Not as good thermally, but much 

easier to work with!
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Aerogel
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Compression power
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